Home / Platform / PS4 / Detroit: Become Human is a different kind of tech showcase

Detroit: Become Human is a different kind of tech showcase


As big budget triple-A games fixate increasingly on delivering larger, more complex open worlds, we’re left wondering – what if all that power was concentrated instead into smaller scale environments with a focus on extreme detail? That’s exactly the approach we see with Detroit: Become Human, with developer Quantic Dream delivering its best game yet – and a polished, intricate presentation quite unlike anything else seen on the market today.

Detroit is built on the latest iteration of Quantic Dream’s in-house engine, and it’s the first original PlayStation 4 title released by the studio. However, its concept is rooted in a 2012 technical demo presented at GDC known as “Kara”, which was designed for PlayStation 3. This demo serves as a teaser for what would become Detroit, while acting as a reference point of sorts for how the technology would evolve over the coming years. It still looks good but the final game is a significant leap beyond that initial demo.

At its core, Detroit shines brightly on both the PlayStation 4 Pro and the original PlayStation 4 console. When using a Pro, Detroit makes use of checkerboard rendering to reach a 2160p pixel count, but many of its post-processing effects are rendered at lower resolutions to save on performance. On the base system, Detroit instead offers a full 1080p image. Both versions make use of an extremely high quality eight-tap temporal anti-aliasing solution, in order to eliminate edge shimmer and in-surface aliasing – Quantic Dream reckons the fidelity holds up against 8x MSAA. It requires just over 1ms of processing time from the game’s 33ms per-frame render budget, making it an effective and fast solution.

In practice, the game’s focus on post-processing actually makes the difference between the two more difficult to pull out in motion – there can be variations in aspects like volumetric light resolution, but side-by-side, both versions look extremely similar. Based on what we’ve played so far, PlayStation 4 Pro’s biggest advantage seems to be performance-based – there are occasional fluctuations under the 30fps level on both systems, but the Pro generally loses fewer frames, while the taxing more open areas see a more profound advantage for the enhanced hardware. The bottom line is that resolution isn’t a crucial component of the presentation overall, and both PlayStation consoles deliver a beautiful look.

Quantic Dreams’ objective was to create an engine that could support a variety of unique environments with lots of dynamic lights, along with variable weather conditions such as rain and snow and advanced direct and indirect lighting. According to the studio’s GDC presentations this year, the latest iteration of its technology utilises clustered forward rendering – an approach that offers many of the advantages associated with forward rendering including a single pass for geometry while also handling many dynamic lights. Standard forward rendering requires lighting calculations to be performed on every visible vertex and fragment, making it computationally expensive to render lots of dynamic lights. By breaking the scene into clusters instead, however, it becomes possible to render more lights within the strict render budget.

While exploring the game, there’s a genuine sense of realism on display but just how is this achieved? It’s a complex question, but one key element lies in its materials systems. Detroit makes use of physically-based rendering to properly simulate roughness and reflectivity of light across materials. When light reflects off surfaces such wooden floors, fabrics or drywall, it dissipates across the surface, while shiny metals or wet pavement present tighter reflections – just like real-life. And all those little imperfections and microscopic abrasions present across real-life surfaces? The utilised BRDF (bidirectional reflectance distribution) ensures that these accounted for. Light also respects the laws of physics thanks to partial energy conservation – which basically means that the reflection of light cannot exceed the brightness of the original light source. All this is to say that like other PBR models, materials are designed to react naturally and realistically to incoming light sources.